Слово «нейросети» по праву может стать одним из самых популярных слов этого года. Вы наверняка его встречали на каком-нибудь новостном портале или слышали на ютуб-канале. Скорее всего, видели сотню сгенерированных нейросетями картинок и удивлялись их возможностям. А недавно, возможно, заметили, как многие из ваших друзей обновили свои аватарки в соцсетях, поддавшись тренду и загрузив в новую модную нейросеть все свои селфи.
Но что такое нейросеть простым языком? Когда и кем она была придумана? Как она работает и что умеет нейросеть? Для чего нужны нейросети? А главное — чем они могут быть полезны и на что способны, кроме ярких картинок? Мы во всем разобрались и сейчас вам расскажем.
Что такое нейросеть простым языком
Нейронные сети — это разновидность машинного обучения, при котором компьютерная программа работает по принципу человеческого мозга, используя различные нейронные связи. Если очень сильно упрощать, это человеческий мозг в миниатюре, только нейроны в нем искусственные и представляют собой вычислительные элементы, созданные по образу и подобию биологических нейронов.
Нейросеть также является обучаемой системой и даже может быть самообучаемой. Она может обучаться как с помощью заданных человеком алгоритмов распознавания или команд, так и на основе прошлого опыта — то есть самостоятельно, используя ранее полученные данные. Буквально как вы сами в детстве: сперва вам помогали родители, обучали вас и направляли, а потом вы сами начали разбираться, как что устроено, делать на основе этого собственные выводы и находить пути решения проблем.
Звучит жутковато, правда? Кажется, что искусственный интеллект вот-вот выйдет из-под контроля и захватит мир — как в известных кинофильмах. Но до полноценного искусственного интеллекта существующим нейросетям еще очень далеко — как минимум потому, что они пока еще не умеют программировать и создавать сами себя, а также представляют собой множество различных программ, никак не связанных между собой.
Зачем нам нужны нейросети
Основные принципы работы нейронных сетей были сформированы в 1943 году американцами Уорреном Маккаллоком и Уолтером Питтсом — нейролингвистами и нейрофизиологами, стоявшими у основ кибернетики и заложившими революционную идею о том, что человеческий мозг — это компьютер.
В 1958 году американский нейрофизиолог Фрэнк Розенблатт разработал первую нейронную сеть, хоть это и слишком громкое название для первой математической модели восприятия информации человеческим мозгом.
На протяжении почти 50 лет математические модели усложнялись и совершенствовались, но только после 2007 года большие объемы данных открыли возможность использовать нейронные сети для машинного обучения.
Так зачем же нам нужны нейросети? Сегодня их чаще всего используют для анализа больших объемов данных, прогнозирования, сопоставления, классификации и распознавания образов в самых широких сферах научных и социально-экономических исследований — от управления предприятиями и распознавания изображений до прогнозирования международных конфликтов и поиска следов жизни на других планетах.
Ранее мы рассказывали:
Не только роботы и дроны: 9 технологичных решений, которые вас удивят
По какому принципу работают нейросети
Современные нейросети работают по нескольким основным принципам. Если описывать их максимально простым языком, то получится примерно следующее:
- В нейросеть загружается некоторое количество конкретных, необходимых для эксперимента или исследования, данных.
- Информация передается с помощью искусственных синапсов от искусственного нейрона к нейрону, от слоя к слою, каждый нейрон может иметь несколько входящих синапсов с данными.
- Данные, полученные каждым нейроном, представляют собой сумму всех данных, умноженных на коэффициент веса каждого искусственного синапса.
- Полученные значения формируют выходные сигналы, которые передаются до тех пор, пока информация не достигнет конечного выхода.
Все равно звучит сложно? Тогда попробуем упростить еще больше. В нейросеть, то есть в заранее созданную сложную математическую модель, как в пустую емкость, загружается массив данных. Это могут быть научные работы, литературные произведения, коллекции изображений и так далее.
Если загрузить в нейросеть собрания сочинений мировых литературных классиков, то на выходе она сможет написать собственный текст в стиле Шекспира — если максимально упрощать и утрировать. Аналогичным образом происходит генерация изображений: вы загружаете в нейросеть базу картинок в различных художественных стилях самых разных художников, а на выходе получаете совершенно новое изображение, созданное по мотивам загруженных данных.
Точно так же нейросети позволяют находить различные закономерности и совпадения при анализе огромных баз данных, например находить преступников или делать прогнозы на несколько лет вперед, основываясь на ранее полученных исследованиях.
Виды нейронных сетей
Все нейронные сети можно разделить на несколько видов: однослойные, многослойные, прямого распространения, рекуррентные.
Однослойные сети сразу же выдают результат после загрузки в них некоторого массива данных. Многослойные сети прогоняют вводную информацию через несколько промежуточных слоев и принципом своей работы больше напоминают биологическую нейронную сеть. Выходная информация получается после прохождения всех слоев, на которых происходит обработка и анализ.
Сети прямого распространения чаще всего используются для распознавания образов, классификации и кластеризации данных — они направлены в одну сторону и не умеют перенаправлять информацию обратно. Ввели данные — получили ответ.
Рекуррентные сети перенаправляют информацию туда и обратно, пока не получат конечный результат. Они используют эффект кратковременной памяти, на основании которого информация дополняется и восстанавливается. Такие сети чаще используются для прогнозирования.
Каждую нейросеть можно распределить по еще нескольким типам. Однородные и гибридные сети — в зависимости от типов нейронов, обучаемые и самообучающиеся — в зависимости от метода обучения, а также аналоговые, двоичные или образные — в зависимости от типа входных сигналов. На самом деле, классификаций еще больше, но это уже материал для еще одной огромной статьи.
Задачи и сферы применения нейросетей
Помимо уже описанных выше задач по сопоставлению образов, прогнозированию, кластеризации информации или генерации текстов и изображений в стиле различных писателей и художников (исключительно в целях развлечения), нейросети также решают и другие задачи, о которых вы, возможно, и не догадывались.
Практически в каждом современном флагманском смартфоне сейчас имеется нейрочип, помогающий анализировать и классифицировать множество входящих данных. Камеры телефонов научились применять автоматические настройки и фильтры во время съемки самых разных объектов, понимая, что вы снимаете еду, природу или архитектуру. Поиск по картинкам, по словам или по названиям каких-либо объектов также может использовать простенькую нейросеть. Например, в iOS вы можете найти все фотографии кошек из галереи изображений, просто написав в поиске слово «кошка». Или распознать и скопировать текст с фотографии в смартфонах Google Pixel.
Прогресс дошел до такого уровня, что появились нейросетевые чат-боты, способные имитировать общение с некогда живущим или недавно умершим человеком. Они создаются на основе ранее загруженных в нейросеть переписок, заметок или дневников.
Кроме того, нейросети активно используются в финансовом секторе, принимая решение о выдаче кредитов потенциальным клиентам банков. Голосовые помощники (та же Алиса от «Яндекса» или Siri от Apple) используют нейросети для распознавания голосовых команд и обработки запросов. С каждым днем сфера применения нейросетей расширяется, упрощая наше взаимодействие с цифровым миром.
Ранее мы рассказывали:
Как технологии меняют нашу еду?
Преимущества и недостатки нейросетей
Очевидно, что само изобретение нейросетей было направлено на то, чтобы приносить как можно больше пользы человечеству. Их основное преимущество перед другими сложными математическими моделями заключается в распознавании более сложных и глубоких закономерностей, позволяющих решать любые поставленные перед ними задачи.
При грамотной настройке нейросети способны выдавать пугающе точные результаты, но нейросети бывают и неточными, а их результаты — слишком приблизительными или только отдаленно напоминающими что-то, что вы хотели бы увидеть. Соответственно, нельзя полностью полагаться на результаты работы нейросети, но их можно использовать в качестве дополнительного инструмента решения конкретных задач.
Хоть нейросети и можно назвать своего рода искусственным интеллектом, пусть и в зачаточном состоянии, до полноценного ИИ нейросетям еще очень далеко. Это связано с тем, что вычислительные возможности человеческого мозга пока что просто невозможно повторить, так как в теле человека содержится 86 млрд биологических нейронов, а в самых современных нейросетях — не более 10 млрд. Какими бы сложными математическими моделями ни были нейросети в своей основе, до человеческого мозга они пока что недотягивают.
Примеры самых полезных и интересных нейронных сетей
Нейросетей в интернете великое множество. Среди них можно выделить несколько полезных и интересных простому обывателю. Вы наверняка слышали о Midjourney, DALL-E 2 или Stable Diffusion, позволяющих генерировать впечатляющие изображения, заполонившие интернет.
Ваши друзья, скорее всего, уже установили себе на смартфон приложение Lensa, превращающее обычные селфи в удивительные яркие аватарки.
источник: iphones.ru
Вы также, возможно, слышали о DeepFake-технологиях — это когда вместо одного лица подставляют другое. На YouTube можно найти множество примеров подобных роликов:
А одна российская студия недавно даже сняла целый DeepFake-сериал с поддельными западными актерами. Можно даже послушать поток бесконечной генеративной музыки.
Но это все развлекательные примеры использования нейросетей. Есть ли какие-то полезные? Нейросеть DeOldify позволяет раскрашивать старые черно-белые фотографии.
источник: indicator.ru
Jasper помогает создавать посты и «продающие тексты» для рассылок и блогов. Remove.bg умеет удалять фон с любой фотографии или изображения. Looka поможет создать логотип для вашего бренда.
источник: looka.com
Нейросеть InPainting от Nvidia умеет ретушировать фотографии. А нашумевший ChatGPT от OpenAI позволяет задать чат-боту любой вопрос и получить на него развернутый ответ — в скором будущем эта технология сможет заменить собой целые поисковые системы или сделать их намного более дружелюбными по отношению к пользователю.
Что в итоге
Теперь вы знаете, для чего нужны нейросети и что делает нейросеть. Как вы уже могли убедиться, нейросети все больше проникают в наше цифровое пространство, позволяя получать удивительные результаты и решать задачи, которые раньше невозможно было бы решить без привлечения нескольких сотен или тысяч сотрудников.
Они умеют обрабатывать гигантские базы знаний, подражать знаменитым художникам и писателям, создавать сюрреалистические изображения и менять актеров в кинофильмах на любых других.
Но это только начало. Куда нас приведет развитие нейросетей, позволят ли они создать полноценный искусственный интеллект и сможем ли мы в конечном итоге полностью оцифровать человеческий мозг — о таком будущем пока что можно лишь фантазировать.
Ранее мы рассказывали:
7 невероятных историй, когда гаджеты спасли жизнь
Любите делиться своим мнением о технике? Тогда напишите обзор товара в «Эльдоблоге» и получите до 1000 бонусов на новые покупки!